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Merkle-Patricia Tree

Ledger
Bookkeeping --> accounting --> balance --> state
Bookkeeping is the recording of financial transactions, and is part of the process
of accounting in business.!l Transactions include purchases, sales, receipts and payments by an
individual person or an organization/corporation. There are several standard methods of bookkeeping,

including the single-entry and double-entry bookkeeping systems.

From <https://en.wikipedia.org/wiki/Bookkeeping>
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511

\

C

o

Ethereum IBM Hyperledger Fabric - IBM HF

Authorized capital
Credit

Fixed Assets
Costs

Incomes

Expenses

Op.No. Input Output RemainingAmount
1 123 0 123
2 5 11 117

Compare with UTxO system
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
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https://en.wikipedia.org/wiki/Accounting
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Bookkeeping#cite_note-Weygandt,_Kieso,_Kimmel_(2003)-1
https://en.wikipedia.org/wiki/Single-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Double-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Bookkeeping
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
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Transaction template:
Tx_N = 'TxN:In11=...| |In12=...| |Out1l=...| |Out12=...| |[Recl=...| |[Rec2=...

Transactions:

Tx_1 = '"Tx1:In11=6000] | In12=3000| | Out11=5000| | Out12=4000| |Rec1=B| | Rec2=A'
Tx_2='Tx2:In21=5000] | Out21=3500| | Out22=1500]| | Rec1=A2| | Rec2=B'
Tx_3='Tx3:In31=3500| | Out31=3500| | Out32=0| | Rec1=E | |Rec2=A2'

>>hTx_1=h28(Tx_1)
hTx_1=AFC73D8

>> hTx_2=h28('Tx2:In21=5000| | Out21=3500| | Out22=1500| | Rec1=A2 | |Rec2=B')
>>hTx_2=h28(Tx_2)

hTx_2 =13251F8

>> hTx_3=h28('Tx3:In31=3500]| | Out31=3500]| | Out32=0| |Rec1=E| |Rec2=A2')

>>hTx_3=h28(Tx_3)
hTx_3 = 99068DE

State tranasition diagramm

H-Functions. Merkle authentication tree
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E::pr:i::: crypt,?fsr:ph'c |, 0086 46BB FBD CBE2 823C
the blue dog function ACC7 6CD1 90B1 EEGE 3ABC
E::,::::: crypt:ag;ﬁph'c |, 8FD8 7558 7851 4F32 DIC6
the blue dog function 76B1 79A9 ODA4 AEFE 4819
o= cryptographic | ['zeps 7eps sar2 cerr 915
the blue dog function D401 COA9 7D9A 46AF FBA5
-[::: re:::)x crypt; grsph'c »| SACA D682 D588 4C75 4BF4
{;he'::u, dog fun?::ion 1799 7D88 BCF8 92BY 6A6C

Binary trees

Merkle_Tree
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Handbook of Applied Cryptography by A. Menezes, P. van Oorschot and S. Vanstone

A binary tree is a structure consisting of vertices and directed edges. The vertices are di-

vided into three types:

1. aroot vertex. The root has two edges directed towards it, a left and a right edge.
2. internal vertices. Each internal vertex has three edges incident to it — an upper edge

directed away from it, and left and right edges directed towards it.
. leaves. Each leaf vertex has one edge incident to it, and directed away from it.

[¥8]

The vertices incident with the left and right edges of an internal vertex (or the root) are called
the children of the internal vertex. The internal (or root) vertex is called the parent of the
associated children. Figure 13.5 illustrates a binary tree with 7 vertices and 6 edges.

ol etunal vertices

C/\ ng[/% < T/’%&l (/{lﬁﬂé

Figure 13.5: A binary tree (with 4 shaded leaves and 3 internal vertices).
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Constructing and using authentication trees
Consider a binary tree 7" which has ¢ leaves. Let h be a collision-resistant hash function. T
can be used to authenticate ¢ public values, Y7, Y, ..., Y;. by constructing an authentica-
tion tree T as follows.
1. Label each of the ¢ leaves by a unique public value Y;.
On the edge directed away from the leaf labeled Y;, put the label A(Y;).
If the left and right edge of an internal vertex are labeled h; and hs. respectively, label
the upper edge of the vertex h(hy||h2).
4. Ifthe edges directed toward the root vertex are labeled »; and us, label the root vertex
h(uq||uz).

Eu _rq

Once the public values are assigned to leaves of the binary tree. such a labeling is well-
defined. Figure 13.6 illustrates an authentication tree with 4 leaves. Assuming some means
to authenticate the label on the root vertex, an authentication tree provides a means to au-
thenticate any of the ¢ public leaf values Y;. as follows. For each public value Y, there is
a unique path (the authentication path) from Y; to the root. Each edge on the path is a left
or right edge of an internal vertex or the root. If e is such an edge directed towards vertex
x. record the label on the other edge (not e) directed toward z. This sequence of labels (the
authentication path values) used in the correct order provides the authentication of Y;. as il-
lIustrated by Example 13.17. Note that if a single leaf value (e.g., Y7) is altered, maliciously
or otherwise, then authentication of that value will fail.

R = h(hz| h(Y3))
.A

hy = h(h”h(YM/%)
C Ys
hy = h(h(Y1)||h(Y2)) //M;'
e )
Ys
h(g)/’\ h(Yz)

Y Y>

Figure 13.6: An authentication mree.

13.17 Example (key verification using authentication trees) Refer to Figure 13.6. The public
value Y; can be authenticated by providing the sequence of labels h(Y2), h(Y3). h(Yy). The
authentication proceeds as follows: compute k(Y7 ): next compute by = h(h(Y7))||h(Y2)):
then compute ho = h(h1|/h(Y3)): finally. accept Y; as authentic if h(hs|h(Ys)) = R.
where the root value R is known to be authentic. O
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The advantage of authentication trees is evident by considering the storage required to
allow authentication of £ public values using the following (very simple) alternate approach:
an entity A authenticates ¢ public values Y3, Y5, ... ,Y; by registering each with a trusted
third party. This approach requires registration of ¢ public values. which may raise storage
issues at the third party when ¢ is large. In contrast. an authentication tree requires only a
single value be registered with the third party.

If a public key Y; of an entity A is the value corresponding to a leaf in an authentication
tree, and A wishes to provide B with information allowing B to verify the authenticity of
Y;. then A must (store and) provide to B both Y; and all hash values associated with the
authentication path from Y; to the root: in addition. B must have prior knowledge and trust
in the authenticity of the root value R. These values collectively guarantee authenticity.
analogous to the signature on a public-key certificate. The number of values each party must
store (and provide to others to allow verification of its public key) is lg(¢). as per Fact 13.19.

13.18 Fact (depth of a binary tree) Consider the length of (or number of edges in) the path from
each leaf to the root in a binary tree. The length of the longest such path is minimized when
the tree is balanced. i.e.. when the tree is constructed such that all such paths differ in length
by at most one. The length of the path from a leaf to the root in a balanced binary tree
containing ¢ leaves is about lg} t).

13.19 Fact (length of authentication paths) Using a balanced binary tree (Fact 13.18) as an au-
thentication tree with ¢ public values as leaves. authenticating a public value therein may
be achieved by hashing lgg't) values along the path to the root.

13.20 Remark (rime-space tradeoff) Authentication trees require only a single value (the root
value) in a free be registered as authentic, but verification of the authenticity of any particu-
lar leaf value requires access to and hashing of all values along the authentication path from
leaf to root.

13.21 Remark (changing leaf values) To change a public (leaf) value or add more values to an
authentication tree requires recomputation of the label on the root vertex. For large balanced

trees, this may involve a substantial computation. In all cases, re-establishing trust of all
users in this new root value (i.e.. its authenticity) is necessary.

The computational cost involved in adding more values to a tree (Remark 13.21) may
motivate constructing the new tree as an unbalanced tree with the new leaf value (or a sub-
tree of such values) being the right child of the root. and the old tree, the left. Another
motivation for allowing unbalanced trees arises when some leaf values are referenced far
more frequently than others.

Bitcoin transactions are permanently recorded in the network through files called blocks. Maximum
size of the block is currently limited to 1 MB but it may be increased in the future. Each block contains
a UNIX time timestamp, which is used in block validity checks to make it more difficult for adversary
to manipulate the block chain. New blocks are added to the end of the record (block chain) by
referencing the hash of the previous block and once added are never changed. A variable number of
transactions is included into a block through the merkle tree (fig 3.). Transactions in the Merkle tree are
hashed using double SHA256 (hash of the hash of the transaction message).

Transactions are included into the block’s hash indirectly through the merkle root (top hash of a merkle
tree). This allows removing old transactions (fig. 4) without modifying the hash of the block. Once the
latest transaction is buried under enough blocks, previous transactions serve only as a history of the
ownership and can be discarded to save space.
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Merkle Tree

Rogt Hash
. q 0
Top hash | L0 2 ={ Block T Block Header (Block Hash)
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>> h20=h28(hTx_1)

—

LhZO = AFC73D8

>> h21=h28(hTx 2) = >>h10=h28('AFC73D8| |13251F8)
“ha1- 1325178 | \h10=B7D1BOC| Root Hash: h0
>> h11=h28(hTx_3) \ >> h0=h28('B7D1BOC| | 99068DE')
| 'h11=99068DE | — (ho =6A34C73
P}jltl’bﬁlﬂ . S5ha2sé
h20: AFC73D8 h10: B7D1B0C
h21: 13251F8 h0: 6A34C73

h11: 99068DE
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Difficulty Target (4) | Nonce (4) i 1

Transaction Counter (variable : 1-9) ! 1 %mypg a, b( <, "#«

Transaction List (variable : Ugtlo 1 MB) ‘%%k f_q?fé 7\}
536870912  $yrbols

''''' 2 brtrtatariry ez e

Difficantt y Tﬂ//gaz” (DT) : g’gﬁm the wmf&x/‘fg @Z Goclt arin g
Jn opr simnlation DT we widld oot o Oﬂmﬂ/ h - welid

pﬁ mendng (wined (&pclk) MﬂVMr/pﬁ 014%% 4 W&Vj
vexadeomal dig it egual 1o 0,

h22 ((Rect oty Aevitash, . 737322631°) =

nonce
>> sha256('RootHash PrevHash 737327631")

ans = FAAE534CD226FAF799 8C8424B348E020BA80639A687E93A0B8C5130ED C51E6DE

>> sha256('RootHash PrevHash 737327632') A

ans = B856211DF2EE15E30AB770C1A43CEO14ECFES73182AFD885B28D96854DBC5F21 /; 2
>>sha256('RootHash PrevHash 737327633') z

ans = 9C18C764E347A58E57AC3F7A3C2874D5889A0E802699FEA47EEFF8CO3BFEDAGY A
>> sha256('RootHash PrevHash 737327634') AR — 2
ans = I2BZ108A70C39565485CCED9C948E5B7A0027D1EE98642E09D5E4D3D84E16814 A M — 2 2o
>> sha256('RootHash PrevHash 737327635') 20
ans = A281AC77F5COAEDEEFFDEDEASSDCEALICS5D76E4222ABSOD8A456AEB2AA9EBOF44 AG — 2

{T = ZW
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>> sha256('RootHash PrevHash 737327648')
ans = 01F9832B2431AFF9D2219E446D613B8361B9903B4B02B8A63990C6B2209785A6

After 17 trials with sequentially increasing nonce Malaga mined a block with DT=1 H-most-significant digit
48-31=17.

>> h28('RootHash PrevHash 737327631')
ans = C51E6DE
>> h28('RootHash PrevHash 737327648')
ans = 09785A6

17 trials again.
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o 244
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The numbet of dﬁl//)?ktﬂpfé h-walnee: 2° B xYy =20
. 20
Mwn.e = 2 — ,/L_. — a1
Pd-' lL‘fO v } 22? — 28 > <Z
DT : three&aa/imﬁ hex mumiber = 000 000XXXX
Ab // LY XY = /fé/
A
Mi = L2 = 5= —0r
P‘""{‘b? LVM} '/22? 272 40956 >> 2712 ans= 4096
. 1 _ 1

e o M””@}‘ 28 T 268435456 >>2128 ans = 268 435 456

The /’r’”éﬂg”r&iﬁ? to wine o flpe X, .4 in Brteorzr whee 1 cth ://p“//a'
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LR PrYOaBLLL U WIS L GLpriK, €., L1 DITLDILT WYIER) 1Cth =40 Wwee

DT ¢ ‘e 4o ,ﬁmo( SHA2S &6 Vatue hﬁwfwg 1Z &%ﬂ/fwj Z=foos

Till this place

>> sha256('RootHash PrevHash 737327631")
ans = FAAES534CD226FAF799 8C8424B348E020BA80639A687E93A0B8C5130EDC51E6DE
000000000000000000  XXXXXXXXXXXXXXXXXXXXXXXKXXXXXX XXX XX XXXXXXXXXXX

The nwnber of possble h-vatues having 256 bits iz
The newmbe 0% ﬂm/.&Z wale h - valtues p)z SHA 25 6 is
256 -A48 Y =254 - F2= 18Y bh‘s, that are represeied 46 hex, vicos,

The vamber of odeguate yalues is 2.

18Y
. 2 187256 -%2 = SP_
Pl‘pé{/bo mee?( = ——2zz = 2 =2 1 K 2 = /o2y

g 1M =2= -
2 = — .

2¥ ~ 4aT = 4/'23?2[{0: 22~23?2l10:2¥% 30
1G =2 =---

N =4 722 366 482 869 645 213 696 _ Lo
AT = 2= --—

Mumbor o triats N = 4746 -2° = 4. 2727
Totaf et Caﬂﬂﬂ'fgf fﬂ/q ~ 2000 T h fsok
. , 12 2o o
Tz/%é’f:_i//_{/_i_’vfﬂ,g%zg _ 4.z
th? 2000 -z o
>> T=int64(4*2719)
T=2097152
>> Tval=T/3600
Tval =583
>> Tdien=Tval/24
Tdien =24

Frivate /éic potrond = Pblic flaklioin
Monetro Upe lecbsvin ¢ TimsoL 11065 Souses —e com )L’VWZZ’?/DZ%f\/méé/

Sender

How 40 reatize conffidentiol Y vodd ({oble trauea fioms.
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hPrBlI

hRoot

BI_N:hPrBI=0CAF06F||hRoot=2CC219F||hTx_N1=AFC73D8||hTx_N2=13251F8||hnTx_N3=5B54128||Nonce=1000

hBI_N

Nonce

hBI_N_Mined

OCAFO6F

2CC219F

BI_1:hPrBI=0CAFO06F||hRoot=2CC219F||h Tx_1=AFC73D8||hTx_2=13251F8||nTx_3=5B5412B]|Nonce=1000

1021

06F61B0
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